

651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 Telephone: (519) 884-0510 Facsimile: (519) 884-0525 www.CRAworld.com

February 15, 2013

Reference No. 039611

Mr. Rosauro del Rosario EPA Project Manager/Coordinator United States Environmental Protection Agency (USEPA) Region 5 77 West Jackson Boulevard Chicago, IL 60604

Dear Mr. del Rosario:

Re: Methane Investigation and Monitoring Plan Results

Himco Site

Elkhart, Indiana

On behalf of the Himco Site Trust, Conestoga-Rovers & Associates (CRA) has prepared this summary of the Methane Investigation and Monitoring Plan (MIMP) results for the Himco Site (Site) in Elkhart, Indiana. This report was prepared in accordance with the United States Environmental Protection Agency- (USEPA-) approved MIMP dated November 6, 2012. The MIMP included the following:

- Installation of seven new soil gas probes (SGPs)
- Weekly soil gas monitoring over 4 weeks
- Evaluation of the data, and development of recommended next steps

The results of the investigation and our recommendations are described below.

ADDITIONAL SOIL GAS PROBES

CRA installed seven new SGPs on December 18, 2012. The purpose of the SGPs is to further delineate the potential extent of the methane detected within the vicinity of existing SGPs 107, 110, and 114, where methane was detected at elevated concentrations in September and October 2012. The United States Army Corps of Engineers (USACE) and the Indiana Department of Environmental Management (IDEM) were on Site to observe the SGP installations. Figure 1 presents the locations of the additional SGPs (SGPs 115, 116, 117S/D, 118, and 119S/D). The borehole logs for the SGPs are presented in Attachment 1. The additional SGPs were installed in accordance with Section 2.2.1 of the Field Sampling Plan (CRA, October 2008) and the MIMP. In accordance with USACE's request, SGPs 115, 116, and 118

2

Reference No. 039611

were installed approximately 30 feet, 40 feet, and 40 feet, respectively, northeast of the proposed location shown in the USEPA-approved MIMP.

MONITORING

In accordance with the MIMP, CRA monitored the new SGPs and SGPs 107, 110, 114, 13, 14, 15, and 27S/27D once per week between December 28, 2012 and January 17, 2013. The SGPs monitored as part of this investigation are shown on Figure 2. The monitoring included measuring pressure and soil gas quality (methane, carbon dioxide, oxygen, and balance gas) concentrations on a percent-by-volume basis using a Dwyer digital manometer and GEM 2000 gas meter. CRA also monitored pressure and soil gas quality at SGPs 108 and 109 on a voluntary basis.

The pressure and soil gas quality data are presented in Table 1. Table 1 also includes data collected in September and October 2012 during operation and maintenance (O&M) monitoring rounds.

Hydrogen sulfide was detected SGP-114 at concentrations greater than the action level (4.4 percent) for two readings during the monitoring period.

Methane concentrations at SGPs 115, 116, and 118 were greater than 5 percent at least once during the MIMP monitoring period. As shown on the borehole log for SGP 116, peat was encountered during the drilling for SGP 116. This peat formation on Site is a likely source of methane. As summarized in Table 1, the methane concentrations detected at SGPs 115 and 118 decreased significantly over the 4-week monitoring period, indicating that the methane is potentially resulting from a limited carbon source.

As summarized in Table 1, the methane concentrations detected at SGPs 117S/D were less than the action level (5 percent by volume) during MIMP monitoring. Methane was detected twice at concentrations exceeding the action level at SGPs 119S/D. The closest residence to SGPs 119S/D is located at 28369 County Road 10 (Rumfelt), approximately 300 feet to the south.

The soil gas concentrations detected at the remaining SGPs monitored as part of the MIMP were similar to the previous monitoring rounds, as summarized below:

 Methane concentrations were between 29.7 percent and 16.2 percent at SGP-107, except during the fourth monitoring event, when the methane concentration decreased to 11.6 percent.

3

Reference No. 039611

- SGPs 108 and 109 were added to the weekly monitoring event since the methane
 concentrations detected at SGP 115 were greater than the action level. The methane
 concentrations detected at SGPs 108 and 109 fluctuated between slightly greater than and
 less than the action level, with fluctuating oxygen and carbon dioxide concentrations,
 indicating unsteady anaerobic activity.
- Methane was not detected at concentrations greater than the action level at SGP 110.
 Methane concentrations were previously detected in the 50 percent range at SGP 110 in September 2012, indicating a steady anaerobic condition. The lower methane concentrations are indicative of a declining anaerobic condition as the methane and carbon dioxide concentrations approach equality.
- Methane was detected at SGP-114 in the 50 percent range during the MIMP program, which
 is greater than the concentrations observed in Fall 2012. This may be due to trapped
 methane under frozen cover soils preventing natural venting, but more data are required to
 determine if this is the case.
- Methane was either not detected or was detected at low concentrations at SGPs 13, 14, 15, 27S/D during the MIMP monitoring events. The data for these probes indicate that there is a buffer zone between the methane detections close to the landfill, and the residents and receptors near the Site.
- CRA monitored SGP-16 to determine if methane was present or migrating south of SGP-109.
 Methane has not been detected at SGP-16 to date.

DISCUSSION OF RESULTS

Landfill gas goes through a specific production pattern consisting of five phases of development (Farquhar and Rovers [1973], modified by Rees [1980], Augenstein and Pacey [1991]). Figure 3 presents the typical production stages of landfill gas (Farquhar and Rovers [1973], modified by Rees [1980], Augenstein and Pacey [1991]). The duration of each of the phases is dependent on a number of factors including the type of waste, moisture content, nutrient content, bacterial content, and pH level. General guidelines regarding the length of the decomposition cycle for the various categories of waste are provided on Figure 3. The heterogeneity of the waste, together with the environment within the waste, has a specific bearing on the decomposition cycle.

The results of the monitoring conducted to date at SGP-107 are indicative of gas characteristics ranging from young (early Phase 3) to declining (middle Phase 3) methane production conditions based on the lack of pressure readings and methane and carbon dioxide concentrations. The Fall 2012 data coupled with the MIMP data indicate unsteady gas

4

Reference No. 039611

production in the vicinity of SGP-107. Figure 4 presents the convergence of soil gas concentrations over time at SGP-107.

In other areas of the Site, the results of monitoring completed to date indicate a declining methane production condition where the percent methane concentration was initially higher than carbon dioxide concentration, but the methane concentration has diminished considerably, and has since waned. This condition is observed at SGPs 110, 115, and 118. Figure 5 presents a graphical representation of the data that illustrates the decline of methane and carbon dioxide concentrations at SGP-110. Based on the data obtained to date, the concentrations over time are trending similar to a declining (Phase 5) gas production pattern.

Figure 6 presents the soil gas concentrations at SGP-114. Soil gas in vicinity of SGP-114 is in an unsteady condition, where the methane and carbon dioxide concentrations were nearly equal, but the data showed higher methane concentrations than carbon dioxide concentrations in late December 2012 and January 2013. The elevated methane concentrations may have resulted from two different factors: 1) this particular location is entering the fourth phase of steady gas production where the methane concentration is greater than the carbon dioxide concentration; and/or, 2) the seasonal change from fall to winter resulted in frozen cover soils temporarily trapping the methane from release to the atmosphere, resulting in greater methane concentrations than previously measured. Further monitoring through different seasons and weather conditions will aid in refining our understanding of the potential anaerobic activity in the vicinity of SGP-114.

The variability in the soil gas concentrations detected between September 2012 and January 2013 can be attributed to a variety of conditions, including the age of the waste and the relocation of the waste during landfill cover construction activities temporarily reenergizing the waste, resulting in significant variability in concentrations. CRA suspects that the loamy landfill cover installed in 2011 and 2012, which has a lower permeability than the sand that previously covered the Site, is also contributing to the variability in observed soil gas concentrations. The cover may be allowing the methane to vent to the atmosphere more easily in certain locations, thus decreasing the soil gas concentrations at particular soil gas probes, or increasing it at other locations. The presence of peat on Site and varying weather conditions/frozen ground will also have contributed to the variability in the soil gas concentrations observed over the relatively short (4-month) monitoring period since O&M monitoring began.

More data are required to verify the data collected to date, further evaluate conditions at the Site, and determine whether ventilation of the methane detected near the southern perimeter of the landfill is necessary.

5

Reference No. 039611

The data collected to date indicate that there is a buffer zone south of the landfill. Existing SGPs 13, 14, 15, 16, and 26S/D can be used to verify that receptors south of the Site are not subjected to elevated methane concentrations. The data collected to date show that the soil gas concentrations are in a state of flux or change, most likely due to the waste being relocated during construction, the presence of naturally occurring peat on Site, and installation of a soil cover that is less permeable than the native sand surrounding the Site. The soil gas readings should stabilize over time.

RECOMMENDATIONS

CRA recommends additional data collection to allow us to further evaluate the effects of seasonal variations on gas concentrations on Site, and determine if the methane concentrations observed to date will continue to decrease. CRA recommends monthly soil gas monitoring at SGPs 107, 108, 109, 110, 114, 115, 116, 118, 119S/D, 27S/D, 13, 14, 15, and 16. Quarterly monitoring will continue at these SGPs and other SGPs in accordance with the O&M Plan (CRA, 2012). The monitoring will be completed in accordance with the procedures in Section 3.2 of the O&M Plan on a monthly basis, for 6 months (February through August 2013). CRA will submit a data report and recommendations within 30 days of the sixth monitoring event (in September 2013).

To avoid unnecessary reporting and contingency monitoring events, CRA proposes not to implement the O&M Plan contingency monitoring schedule (daily monitoring of soil gas concentrations) and will not notify USEPA within 24 hours of observing soil gas at concentrations exceeding the action level, since we have already determined that elevated concentrations of soil gas may be detected at select SGPs. However, if soil gas concentrations exceed the action levels at SGPs located within the buffer zone south of the Site (including SGPs 13, 14, 15, 16, 25S/D, 26S/D, and 27S/D), we will notify USEPA and will increase the frequency of monitoring to a frequency approved by USEPA.

6

Reference No. 039611

Please contact Denise Quigley at (519) 884-0510 or Douglas Gatrell at (734) 453-5123 if you have questions or require additional information.

Yours truly,

CONESTOGA-ROVERS & ASSOCIATES

Denise Gay Quigley, P. Eng., PE

Douglas M. Gatrell, PE

Douglas M. Gatul

DQ/lp/45 Encl.

cc: Gary Toczylowski - Bayer HealthCare

Tom Lenz - Bayer HealthCare

Christopher Fassero - USACE (3 copies)

Doug Petroff - IDEM (2 copies)

Alan Van Norman-CRA

figure 1
ADDITIONAL GAS PROBE LOCATIONS
HIMCO SITE
Elkhart, Indiana

PHASES	CONDITION	TIME FRAME - TYPICAL
1	AEROBIC	HOURS TO 1 WEEK
ם	ANOXIC	1 TO 6 MONTHS
I	ANAEROBIC, METHANOGENIC, UNSTEADY	3 MONTHS TO 3 YEARS
IV	ANAEROBIC, METHANOGENIC, STEADY	8 TO 40 YEARS
℧	ANAEROBIC, METHANOGENIC, DECLINING	1 TO 40+ YEARS
TOTAL		10 TO 80+ YEARS

SOURCE:

FARQUHAR AND ROVERS, 1973, AS MODIFIED BY REES, 1980, AND AUGENSTEIN & PACEY, 1991.

figure 3

TYPICAL LFG PRODUCTION STAGES
HIMCO SITE
Elkhart, Indiana

TABLE 1

		Pressure	Gas Quality/0	Combustible (Gas Concen	itrations
Location	Date	$(in H_2O)$	Methane % 1	CO2 % 1	O2 % 1	H2S % 1
SGP-100	9/21/2012	0.0	0	6.1	16.3	0
	12/28/2012	0.0	2.1	7.4	15.4	0
SGP-101	9/21/2012	0.0	0	4.0	17.0	0
301 101	12/28/2012	0.0	0.1	0.2	20.2	0
CCD 100			0	2.0		0
SGP-102	9/21/2012 12/28/2012	0.0 0.0	0 0	3.8 0.9	16.1 2 0.0	0 0
SGP-103	9/21/2012	0.0	2.6	9. <i>7</i>	0.3	0
	12/28/2012	0.0	0.2	5.9	1.4	0
SGP-104	9/21/2012	0.0	0	8.4	12.1	0
	12/28/2012	0.0	0.2	3.4	12.6	0
SGP-105	9/21/2012	0.0	0	17.3	4.8	0
	12/28/2012	0.0	0.3	3.4	17.6	0
SGP-106	9/21/2012	0.0	0	13.0	10.9	0
361-100	12/28/2012	0.0	0.7	9.8	15.4	0
SGP-107	9/21/2012	0.0	24.9	32.6	0.9	0
	9/24/2012	0.0	29.6	34.0	0.1	0
	9/25/2012	0.0	29.7	34.6	0.1	0
	9/26/2012	0.0	18.4	29.2	2.2	0
	9/27/2012	0.0	28.1	34.0	0.5	0
	9/28/2012	0.0	28.2	33.6	0.0	0
	9/28/2012 ²	0.0	28.0	33.2	0.7	0
	$10/1/2012^3$	0.0	29.1	34.6	0.0	0
	10/1/2012 ²	0.0	29.0	34.4	0.3	0
	10/2/2012	0.0	16.2	22.3	3.6	0
	10/3/2012	0.0	19.3	26.7	0.9	0
	10/4/2012	0.0	25.3	32.6	0.0	0
	10/5/2012	0.0	26.5	35.0	0.1	0
	10/12/2012	0.0	20.0	26.4	2.2	0
	10/19/2012	0.0	<i>27.7</i>	32.2	0.9	0
	12/28/2012	0.0	25.1	25.2	0.6	0
	1/3/2013	0.0	24.6	23.8	1.6	0
	1/10/2013	0.0	22.5	24.6	2.2	0
	1/17/2013	0.0	11.6	9.1	11.7	0
SGP-108	9/21/2012	0.0	0.0	9.8	6.7	0
	12/28/2012	1.2	8.6	3.1	2.1	0
	1/3/2013	0.0	8.4	2.7	3.3	0
	1/10/2013	0.0	7.8	2.7	6.6	0
	1/17/2013	0.0	0.5	0.0	19.8	0
SGP-109	9/21/2012	0.0	1.3	8.4	6.3	0
	12/28/2012	1.5	8.8	5.7	0.3	0
	1/3/2013	0.0	3.4	3.4	12.1	0
	1/10/2013	0.0	5.9	5.2	4.0	0
	1/17/2013	0.0	9.2	5.4	1.1	0

		Pressure	Gas Quality/0	Combustible (Gas Concer	ıtrations
Location	Date	$(in H_2 O)$	Methane % 1	CO2 % ¹	O2 % 1	H2S % 1
SGP-110	9/21/2012	0.0	53.5	24.4	2.1	0
	9/24/2012	0.0	55.1	26.7	0.0	0
	9/25/2012	0.0	56.7	27.9	0.1	0
	9/26/2012	0.0	60.4	27. 3	0.1	0
	9/27/2012	0.0	17.0	13.5	10.5	0
	9/28/2012	0.0	58.3	25.8	0.1	0
	9/28/2012 ²	0.0	38.2	22.3	3.9	0
	$10/1/2012^{3}$	0.0	53.2	24.2	2.0	0
	10/1/2012 ²	0.0	34.2	22.2	4.7	0
	10/2/2012	0.0	9.3	8.9	14.3	0
	10/3/2012	0.0	14.5	10.6	11.3	0
	10/4/2012	0.0	57.1	24.8	0.9	0
	10/5/2012	0.0	58.4	26.1	0.0	0
	10/12/2012	0.0	49.4	22.5	0.0	0
	10/19/2012	0.0	10.7	8.9	3.5	0
	12/28/2012	0.0	2.5	5.9	7.9	0
	1/3/2013	0.0	0.2	1.6	19.9	0
	1/10/2013	0.0	0.3	3.7	15.3	0
	1/17/2013	0.0	0.2	0.0	19.8	0
SGP-111	9/21/2012	0.0	0.0	7.1	11.4	0
	12/28/2012	0.0	0.3	0.1	21.3	0
SGP-112	9/21/2012	0.0	0.0	4.7	2.3	0
	12/28/2012	0.0	0.0	2.1	13.4	0
SGP-113	9/21/2012	0.0	1.4	7.6	2.0	0
	12/28/2012	0.0	0.0	3.5	9.2	0
SGP-114	9/21/2012	0.0	24.9	29.7	0.4	0
50 1-114	9/24/2012	0.0	24.8	28.5	0.0	0
	9/25/2012	0.0	25.0	29.9	0.0	8
	9/26/2012	0.0	24.1	28.8	1.1	10
	9/27/2012	0.0	23.9	29.0	1.3	10
	9/28/2012	0.0	23.5	28.2	1.3	8
	9/28/2012 ²	0.0	0.0	0.1	20.3	0
	• •					
	10/1/2012 3	0.0	24.5	29.4	0.0	7
	10/1/2012 2	0.0	24.2	28.9	0.7	8
	10/2/2012	0.0	21.4	25.1	0.8	0
	10/3/2012	0.0	17.6	20.8	3.1	0
	10/4/2012	0.0	23.2	29.1	0.0	0
	10/5/2012	0.0	23.4	29.4	0.0	0
	10/12/2012	0.0	22.9	28.7	0.1	0
	10/19/2012	0.0	32.2	29.5	0.1	0
	12/28/2012	0.0	58.5 50.0	31.0	1.1	6
	1/3/2013	0.0	58.9	30.8	3.0	5
	1/10/2013	0.0	58.9	31.9	1.0	4
	1/17/2013	0.0	62.7	29.9	0.9	0

TABLE 1

		Pressure	Gas Quality/(Combustible (Gas Concer	itrations
Location	Date	(in H ₂ O)	Methane % 1	CO2 % ¹	O2 % 1	H2S % 1
SGP-115	12/28/2012	1.3	34.5	36.5	1.3	0
	1/3/2013	0.0	34.8	35.6	2.4	0
	1/10/2013	0.0	35.6	36.6	6.9	0
	1/17/2013	0.0	0.3	0.0	20.2	0
SGP-116	12/28/2012	1.9	58.4	46.5	0.6	0
	1/3/2013	0.0	59.8	45.6	1.3	0
	1/10/2013	0.0	61.8	45.4	4.1	0
	1/17/2013	0.0	52.6	40.6	1.6	0
SGP-117S	12/28/2012	0.0	2.2	14.9	0.3	0
	1/3/2013	0.0	1.9	10.7	7.4	0
	1/10/2013	0.0	2.0	14.7	3.6	. 0
	1/17/2013	0.0	2.5	13.5	0.7	0
SGP-117D	12/28/2012	0.0	1.5	15.8	0.5	0
	1/3/2013	0.0	1.4	10.6	6.7	0
	1/10/2013	0.0	1.3	9.4	11.2	0
	1/17/ 2 013	0.0	1.4	9.0	7.2	0
SGP-118	12/28/2012	0.0	60.0	41.4	1.2	0
	1/3/2013	0.0	61.1	41.5	1.1	0
	1/10/2013	1.9	0.3	0.0	19.7	0
	1/17/2013	0.0	0.2	0.0	21.3	0
SGP-119S	12/28/2012	0.0	4.8	7.6	15.3	0
	1/3/2013	0.0	4.0	7.2	16.0	0
	1/10/2013	0.0	2.6	6.2	16.0	0
	1/17/2013	0.0	10.4	10.5	14.5	0
SGP-119D	12/28/2012	0.0	6.8	12.4	11.5	0
	1/3/2013	0.0	5.3	4.4	11.2	0
	1/10/2013	0.0	3.8	11.2	13.0	0
	1/17/2013	0.0	15.6	15.3	10.0	0

TABLE 1

		Pressure	Gas Quality/(Combustible (Gas Concer	ıtrations
Location	Date	(in H 2 O)	Methane % 1	CO2 % 1	O2 % 1	H2S % 1
SGP-13	9/24/2012	0.0	0.0	0.7	19.7	0
	9/25/2012					
	9/26/2012	0.0	0.0	0.5	19.8	0
	9/27/2012	0.0	0.0	0.6	19.8	0
	9/28/2012	0.0	0.0	0.5	19.9	0
	10/1/2012	0.0	0.0	0.6	19.8	0
	10/2/2012	0.0	0.0	0.5	19.6	0
	10/3/2012	0.0	0.1	0.8	19.5	0
	10/4/2012	0.0	0.0	0.6	19.6	0
	10/5/2012	0.0	0.0	0.6	20.1	0
	10/12/2012	0.0	0.0	0.5	19.7	0
	10/19/2012	0.0	0.0	0.5	20.9	0
	12/28/2012	0.0	0.0	0.4	20.8	0
	1/3/2013	0.0	0.0	0.0	20.7	0
	1/10/2013	0.0	0.0	0.0	19.9	0
	1/17/2013	0.0	0.0	0.0	20.0	0
SGP-14	9/24/2012	0.0	0.0	0.6	19.6	0
	9/25/2012					
	9/26/2012	0.0	0.0	0.6	19.8	0
	9/27/2012	0.0	0.0	0.6	19.9	0
	9/28/2012	0.0	0.0	0.6	20.1	0
	10/1/2012	0.0	0.0	0.7	19.9	0
	10/2/2012	0.0	0.0	0.6	19.8	0
	10/3/2012	0.0	0.0	0.6	19.9	0
	10/4/2012	0.0	0.0	0.6	19.5	0
	10/5/2012	0.0	0.0	0.5	20.3	0
	10/12/2012	0.0	0.0	0.7	20.7	0
	10/19/2012	0.0	0.0	0.5	20.4	0
	12/28/2012	0.0	0.0	0.1	20.6	0
	1/3/2013	0.0	0.0	0.4	20.6	0
	1/10/2013	0.0	0.0	0.0	20.5	0
	1/17/2013	0.0	0.0	0.0	20.4	0
SGP-15	9/24/2012	0.0	0.0	0.3	20.0	0
	9/25/2012					
	9/26/2012	0.0	0.0	0.0	19.9	0
	9/27/2012	0.0	0.0	0.0	20.2	0
	9/28/2012	0.0	0.0	0.6	20.1	0
	10/1/2012	0.0	0.0	0.0	20.2	0
	10/2/2012	0.0	0.0	0.0	20.1	0
	10/3/2012	0.0	0.0	0.0	19.6	0
	10/4/2012	0.0	0.0	0.9	19.2	0
	10/5/2012	0.0	0.0	0.0	19.9	0
	10/12/2012	0.0	0.0	0.0	20.1	0
	10/19/2012	0.0	0.0	0.0	19.8	0
	12/28/2012	0.0	0.0	0.3	20.5	0
	1/3/2013	0.0	0.0	0.3	20.5	0
	1/10/2013	0.0	0.0	0.4	20.4	0
	1/17/2013	0.0	0.0	0.0	20.5	0
	*					

TABLE 1

		Pressure	Gas Quality/C	Combustible (Gas Concen	trations
Location	Date	$(in H_2O)$	Methane % 1	CO2 % 1	O2 % 1	H2S % 1
SGP-16	1/17/2013	0.0	0.0	0.0	19.9	0
SGP-27S	9/24/2012	0.0	0.0	0.7	19.7	0
	9/25/2012					
	9/26/2012	0.0	0.0	0.0	20.1	0
	9/27/2012	0.0	0.0	0.7	19.8	0
	9/28/2012	0.0	0.0	0.6	19.6	0
	10/1/2012	0.0	0.0	0.6	20.1	0
	10/2/2012	0.0	0.0	0.6	19.9	0
	10/3/2012	0.0	0.0	0.8	19.8	0
	10/4/2012	0.0	0.0	0.8	19.2	0
	10/5/2012	0.0	0.0	1.0	19.6	0
	10/12/2012	0.0	0.0	0.7	20.0	0
	10/19/2012	0.0	0.0	0.8	19.9	0
	12/28/2012	0.0	0.0	0.2	21.1	0
	1/3/2013	(4)	(4)	(4)	(4)	(4)
	1/10/2013	0.0	0.2	0.0	20.0	0
	1/17/2013	0.0	0.0	0.0	20.3	0
SGP-27D	9/24/2012	0.0	0.0	0.7	19.8	0
	9/25/2012					
	9/26/2012	0.0	0.0	0.9	19.5	0
	9/27/2012	0.0	0.0	0.9	19.7	0
	9/28/2012	0.0	0.0	0.8	19.4	0
	10/1/2012	0.0	0.0	0.9	19.6	0
	10/2/2012	0.0	0.0	0.8	19.7	0
	10/3/2012	0.0	0.0	0.9	19.7	0
	10/4/2012	0.0	0.0	1.1	18.8	0
	10/5/2012	0.0	0.0	1.0	19.8	0
	10/12/2012	0.0	0.0	0.9	19.8	0
	10/19/2012	0.0	0.0	1.0	19.8	0
	12/28/2012	0.0	0.0	0.2	21.0	0
	1/3/2013	0.0	0.0	0.5	20.4	0
	1/10/2013	0.0	0.0	0.2	19.6	0
	1/17/2013	0.0	0.2	0.0	20.3	0

Notes:

- 1- Percent by volume
- 2- Valve opened for 30 minutes and closed prior to reading
- 3- Valves at SGP107, SGP110 and SGP114 were left open overnight on October 1, 2012
- 4- Broken valve; no monitoring at this location on this date

ATTACHMENT 1

BOREHOLE LOGS

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-115

DATE COMPLETED: December 18, 2012

DRILLING METHOD: DIRECT PUSH

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV.	MONITORING WELL	79.23		SAMF	7-	_
, 500		CASING OF RISER SURFACE	767.81 767.44 763.70		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
2	CL-SILTY CLAY, with sand, trace gravel, soft, low plasticity, brown, wet - stiff, moist at 1.5ft BGS SP-SAND (FILL), with construction debris (brick, bits of plastic), dark brown to black		761.10	BENTONITE CHIPS 1/2" PVC WELL CASING 1/2" PVC WELL SCREEN	1GP		80		0.4
8	- no debris, fine grained, compact, reddish brown, slightly moist at 6.0ft BGS - brown at 6.5ft BGS - with plastic debris, brown at 7.2ft BGS SP-SAND, fine to medium grained, poorly graded, compact, brown, slightly moist		755.70	3" BOREHOLE 3/8" CLEAR STONE	2GP		100		0.
12	 very moist to wet at 11.0ft BGS wet at 12.0ft BGS gray at 13.0ft BGS medium grained at 13.5ft BGS 			LATURAL LATURAL LATURAL LATURAL LATURAL COLLAPSE LATURAL LA	3GP		60		0.
16	END OF BOREHOLE @ 15.0ft BGS		748.70	WELL DETAILS Screened interval: 760.70 to 756.70ft 3.00 to 7.00ft BGS Length: 4ft Diameter: 0.5in Material: PVC Sand Pack: 760.90 to 752.70ft 2.80 to 11.00ft BGS Material: 3/8" CLEAR STONE					

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-116

DATE COMPLETED: December 18, 2012

DRILLING METHOD: DIRECT PUSH

EPTH R BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	6.8	ELEV.	MONITORING WELL			SAME		
(1000	NORTHING: 2352305.1 TOP OF C EASTING: 234808.97 TOP OF GROUND SU	RISER	766.84 766.58 763.24		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
2	CL-SILTY CLAY, with sand, trace gravel, low plasticity, soft, brown, very moist - firm at 0.8ft BGS FILL, crushed stone, with sand, white/tan SP-SAND (FILL), trace silt, fine grained, compact, poorly graded, brown, moist - silty at 3.3ft BGS - red brick debris at 3.6ft BGS - red brick debris at 3.9ft BGS		761.44 760.44	BENTONITE CHIPS	1GP		80		0.0
6	FILL, gravel-like material, coarse to regular form, liquid weight, black, slag, wet		756.64 755.74	3/8" CLEAR STONE GRANULAR BENTONITE			80		0.4
В	SP-SAND (FILL), trace gravel, poorly graded, medium grained, gray to brown, very moist - no gravel, wet at 8.0ft BGS PT-PEAT, wood, roots, organic material, dark brown, slightly moist, strong hydrocarbon odor	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	754.54	Lilia Lilia Lilia Collapse					0.:
12	END OF BOREHOLE @ 10.0ft BGS		753.24	WELL DETAILS Screened interval: 760.14 to 757.64ft 3.10 to 5.60ft BGS Length: 2.5ft Diameter: 0.5in Material: PVC Sand Pack: 760.24 to 756.64ft 3.00 to 6.60ft BGS Material: 3/8" CLEAR STONE					
16						5			
18				2					

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-117D
DATE COMPLETED: December 18, 2012
DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION	N & REMARKS	ELEV.	MONITORING WELL	1000		SAME	PLE	
ft BGS	NORTHING: 2352127.99	TOP OF CASING	ft 767.80	П	NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
	EASTING: 234644.33	TOP OF RISER GROUND SURFACE	766.91 763.95		ž	Z	2	Ž	4
2	CL-SILTY CLAY, with sand, trace go low plasticity, brown, moist - soft, very moist at 3.2ft BGS - stiff, moist at 3.7ft BGS	ravel, firm,		BENTONITE CHIPS 3/8" NYLON WELL CASING	1GP		80		0.0
6	- firm at 5.0ft BGS			2" BOREHOLE					0.0
8			755.65		2GP		100		
10	GLASS DEBRIS, broken bits SP-SAND, trace silt, fine grained, c poorly graded, brown, moist	ompact,	755.55	3/8"					0.0
40	- brown at 11.0ft BGS		-	STAINLESS STEEL MESI WELL SCREEN 10/20 SAND	1				0.
12	- very moist to wet at 12.0ft BGS - medium grained, gray at 13.3ft BG	ss		L.L.L. L.L.L. L.L.L. L.L.L. NATURAL COLLAPSE	3GP	5	60		0.0
14	END OF BOREHOLE @ 15.0ft BG	s	748.95	WELL DETAILS Screened interval:					
16				753.95 to 752.95ft 10.00 to 11.00ft BGS Length: 1ft Diameter: 0.4in Material: 3/8" STAINLESS STEEL MESH SCREEN Sand Pack: 754.45 to 751.95ft 9.50 to 12.00ft BGS Material: 10/20 SAND					

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-117S

DATE COMPLETED: December 18, 2012

DRILLING METHOD: DIRECT PUSH

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-118

DATE COMPLETED: December 18, 2012

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV.	MONITORING WELL		York	SAME	PLE	
t BGS	NORTHING: 2352679.88 TOP OF	CASING F RISER	ft 766.02 765.72		NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
	GROUND SI		762.57		Z	Z	2	Z	<u>a</u>
	TOPSOIL, with grass and roots CL-SILTY CLAY, with sand, trace gravel, low plasticity, stiff, brown, moist		762.37	BENTONITE CHIPS					0.
2	FILL, calcium-sulfate like material, fine grained powder, compact, white		760.57 759.87	1/2" PVC	1GP		80		
4	FILL, construction debris, layers of wood, plywood, yellow foam, plastic sheet, newspaper			WELL					3.
	OLD TOPSOIL, with roots, silty sand material, loose, brown to black, slightly moist	1/ 1/4/	757.77 757.07	1/2" PVC WELL SCREEN		-7-			
6	SP-SILTY SAND, fine to medium grained, compact, poorly graded, dark brown, slightly moist - brown at 6.5ft BGS			3" BOREHOLE 1/2" PVC WELL SCREEN					0.
8	- gray, moist at 7.7ft BGS			3/8" CLEAR STONE GRANULAR	2GP		90		
	- very moist to wet at 8.8ft BGS - brown, wet at 9.3ft BGS			BENTONITE LALAL NATURAL COLLAPSE			200 See		0.
10	END OF BOREHOLE @ 10.0ft BGS	<u> </u>	752.57	WELL DETAILS Screened interval: 758.87 to 755.37ft 3.70 to 7.20ft BGS					
12				Length: 3.5ft Diameter: 0.5in Material: PVC Sand Pack: 759.57 to 754.57ft 3.00 to 8.00ft BGS					
14				Material: 3/8" CLEAR STONE					
16									
18									

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-119D

DATE COMPLETED: December 18, 2012

DRILLING METHOD: DIRECT PUSH FIELD PERSONNEL: M. GROVES

EPTH	STRATIGRAPHIC DESCRIPTION & REMARK	S	ELEV.	MONITOR	RING WELL		W 5	SAME		W.
BGS	NORTHING: 2352547.97 TOP 0	OF CASING	ft 766.70	П		NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
		OF RISER SURFACE	765.94 762.96			N	N	RE	ż	P
100	TOPSOIL, with grass and roots	311/4	762.66		CONCRETE	TO L	West of	- 539		
	SP-SAND, with silt, fine to medium grained, compact, poorly graded, brown, moist				BENTONITE CHIPS		met - "		A STATE OF	0.2
	- reddish brown at 1.8ft BGS		lly.							
	- light brown at 3.0ft BGS				— 3/8" NYLON WELL	1GP		90		
					CASING		P.2			0.1
			145		— 2" BOREHOLE					
	- trace silt, loose, reddish brown, slightly moist				BONEHOLE		8 8			0.2
	at 6.2ft BGS - gray at 7.0ft BGS			4072 4072 =	3/8"					
	- compact, brown at 7.2ft BGS - light brown, moist at 8.1ft BGS				STAINLESS STEEL MESH WELL	2GP	1	96		
	- brown, wet at 8.8ft BGS			4.4.4	SCREEN —— 10/20 SAND		54 E			0.
0			752.96	2,2,2	MATURAL COLLAPSE				-	
	END OF BOREHOLE @ 10.0ft BGS		7 02.00	WELL DETAILS						
				Screened interval 755.96 to 753	Mary A. C. Company of the Company of					
			A September 1	7.00 to 9.00ft Length: 2ft	BGS					
2				Diameter: 0.4in						
				Material: 3/8" S STEEL MESH S		1,4				
				Sand Pack: 756.46 to 753	s 96ff			= 58	7	
				6.50 to 9.00ft	BGS	- 1	N. T			
4				Material: 10/20	SAND			6		
				× .	Meria		1		3.4	
		7			165 / 1					
•			J	Section 18	A-4					
6					1			1		
					5 ()			pur?		
	4 4			250						
						-		100		
8								1	77.16	
					3-51		0			
			-			5° 10				
	1 20/1			7-1-1	All to be		- 7	309	- 12	
	SAME STATE OF THE	C10 (10 s/2) (The same and the same and			1		

Page 1 of 1

PROJECT NAME: HIMCO SITE PROJECT NUMBER: 39611

CLIENT: BAYER HEALTHCARE LLC

LOCATION: ELKHART, IN

HOLE DESIGNATION: SGP-119S

DATE COMPLETED: December 18, 2012
DRILLING METHOD: DIRECT PUSH

EPTH	STRATICDARHIC DESCRIPTION & DEMARKS		ELEV.	MONITORING WELL			SAMI	PLE	16.
BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ft	MONITORING WELL	3ER	:VAL	(%)	TUE	
	NORTHING: 2352547.71 TOP OF 6 EASTING: 233967.69 TOP OF 6 GROUND SU	RISER	766.49 765.96 762.87		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	TOPSOIL, with grass and roots	74 14.	762.57	CONCRETE					
	SP-SAND, with silt, fine to medium grained, compact, poorly graded, brown, moist		, 62.6	BENTONITE CHIPS	*				
2	- reddish brown at 1.8ft BGS								
	- light brown at 3.0ft BGS			3/8" NYLON WELL CASING					4 4 T
4				2" BOREHOLE 3/8" STAINLESS				2	
6	END OF BOREHOLE @ 5.5ft BGS		757.37	WELL DETAILS Screened interval: Screened interval:					
				758.37 to 757.37ft 4.50 to 5.50ft BGS Length: 1ft					
3				Diameter: 0.4in Material: 3/8" STAINLESS STEEL MESH SCREEN Sand Pack:	-				
				758.87 to 757.37ft 4.00 to 5.50ft BGS Material: 10/20 SAND					
10									
12								5	
14									
			-						
16				3					
18									
				1 1 1 1					
1	NOTES: MEASURING POINT ELEVATIONS MAY CHAI			· A A C A A C A				1	